CPRS: A Cloud-Based Program Recommendation System for Digital TV Platforms

نویسندگان

  • Chin-Feng Lai
  • Jui-Hung Chang
  • Chia-Cheng Hu
  • Yueh-Min Huang
  • Han-Chieh Chao
چکیده

Traditional electronic program guides (EPGs) cannot be used to find popular TV programs. A personalized digital video broadcasting – terrestrial (DVB-T) digital TV program recommendation system is ideal for providing TV program suggestions based on statistics results obtained from analyzing largescale data. The frequency and duration of the programs that users have watched are collected and weighted by data mining techniques. A large dataset produces results that best represent a viewer’s preferences of TV programs in a specific area. To process such a massive amount viewer preference data, the bottleneck of scalability and computing power must be removed. In this paper, an architecture for a TV program recommendation system based on cloud computing and a map-reduce framework, the map-reduce version of k-means and the k-nearest neighbor (kNN) algorithm, is introduced and applied. The proposed architecture provides a scalable and powerful backend to support the demand of large-scale data processing for a program recommendation system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach

In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...

متن کامل

Personalized recommendation of linear content on interactive TV platforms: beating the cold start and noisy implicit user feedback

Recommender systems in TV applications mostly focus on the recommendation of video-on-demand (VOD) content, although the major part of users’ content consumption is realized on linear channel programs (live or recorded), termed EPG programs. The accurate collaborative filtering algorithms suitable for VOD recommendation cannot be directly carried over for EPG program recommendation. First, EPG ...

متن کامل

A Methodology of Personalized Recommendation System on Mobile Device for Digital Television Viewers

With the increasing of the number of digital television (TV) channels in Thailand, this becomes a problem of information overload for TV viewers. There are mass numbers of TV programs to watch but the information about these programs is poor. Therefore, this work presents a personalized recommendation system on mobile device to recommend a TV program that matches viewer’s interests and/or needs...

متن کامل

A Component-Based Architecture for Ginga

This paper discusses how component-driven development can be used in the design of the Ginga middleware architecture, including its Ginga-NCL presentation module. Presentation engines have an important facility, since they allow for previewing when each specific media player is needed. Therefore, to maintain temporal consistency during application presentations, instantiation time of media play...

متن کامل

User Modeling and Recommendation Techniques for Personalized Electronic Program Guides

This chapter presents the recommendation techniques applied in Personal Program Guide (PPG). This is a system generating personalized Electronic Program Guides for Digital TV. The PPG manages a user model that stores the estimates of the individual user’s preferences for TV program categories. This model results from the integration of different preference acquisition modules that handle explic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010